skip to main content


Search for: All records

Creators/Authors contains: "Wood, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban landscaping conversions can alter decomposition processes and soil respiration, making it difficult to forecast regional CO2 emissions. Here we explore rates of initial mass loss and net nitrogen (N) mineralization in natural and four common urban land covers (waterwise, waterwise with mulch, shrub, and lawn) from sites across seven colleges in southern California. We found that rates of decomposition and net N mineralization were faster for high-N leaf substrates, and natural habitats exhibited slower rates of decomposition and mineralization than managed urban landcovers, especially lawns and areas with added mulch. These results were consistent across college campuses, suggesting that our findings are robust and can predict decomposition rates across southern California. While mechanisms driving differences in decomposition rates among habitats in the cool-wet spring were difficult to identify, elevated decomposition in urban habitats highlights that conversion of natural areas to urban landscapes enhances greenhouse gas emissions. While perceived as sustainable, elevated decomposition rates in areas with added mulch mean that while these transformations may reduce water inputs, they increase soil carbon (C) flux. Mimicking natural landscapes by reducing water and nutrient (mulch) inputs and planting drought-tolerant native vegetation with recalcitrant litter can slow decomposition and reduce regional C emissions. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Droughts can have devastating societal impacts. Yet, we do not fully understand the mechanisms that control their development, possibly affecting our ability to predict them. Here we run a moisture‐tracking analytical model using reanalysis data between 1980 and 2016 to explore the role of reduced moisture transport in drought propagation. We find that agricultural droughts in multiple subregions across North America may be amplified by decreased moisture transport from upwind land areas, which we link to reduced evapotranspiration and dry soil moisture upwind. We also find that decreases in precipitation recycling are correlated with decreases in moisture arriving from upwind areas. We estimate that decreases in moisture contributions from land areas accounted for 62% of the precipitation deficit during the 2012 Midwest drought. Our results suggest that the land surface may contain useful information for drought prediction and highlight the importance of sustainable land use and of regional cooperation for drought risk management.

     
    more » « less
  5. Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests.

     
    more » « less